A hybrid continuous-discrete method for stochastic reaction–diffusion processes
نویسندگان
چکیده
Stochastic fluctuations in reaction-diffusion processes often have substantial effect on spatial and temporal dynamics of signal transductions in complex biological systems. One popular approach for simulating these processes is to divide the system into small spatial compartments assuming that molecules react only within the same compartment and jump between adjacent compartments driven by the diffusion. While the approach is convenient in terms of its implementation, its computational cost may become prohibitive when diffusive jumps occur significantly more frequently than reactions, as in the case of rapid diffusion. Here, we present a hybrid continuous-discrete method in which diffusion is simulated using continuous approximation while reactions are based on the Gillespie algorithm. Specifically, the diffusive jumps are approximated as continuous Gaussian random vectors with time-dependent means and covariances, allowing use of a large time step, even for rapid diffusion. By considering the correlation among diffusive jumps, the approximation is accurate for the second moment of the diffusion process. In addition, a criterion is obtained for identifying the region in which such diffusion approximation is required to enable adaptive calculations for better accuracy. Applications to a linear diffusion system and two nonlinear systems of morphogens demonstrate the effectiveness and benefits of the new hybrid method.
منابع مشابه
Hybrid Stochastic-Deterministic Solution of the Chemical Master Equation
The chemical master equation (CME) is the fundamental evolution equation of the stochastic description of biochemical reaction kinetics. In most applications it is impossible to solve the CME directly due to its high dimensionality. Instead indirect approaches based on realizations of the underlying Markov jump process are used such as the stochastic simulation algorithm (SSA). In the SSA, howe...
متن کاملAdaptive hybrid simulations for multiscale stochastic reaction networks.
The probability distribution describing the state of a Stochastic Reaction Network (SRN) evolves according to the Chemical Master Equation (CME). It is common to estimate its solution using Monte Carlo methods such as the Stochastic Simulation Algorithm (SSA). In many cases, these simulations can take an impractical amount of computational time. Therefore, many methods have been developed that ...
متن کاملGenerating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملA hybrid multiscale kinetic Monte Carlo method for simulation of copper electrodeposition
A hybrid multiscale kinetic Monte Carlo (HMKMC) method for speeding up the simulation of copper electrodeposition is presented. The fast diffusion events are simulated deterministically with a heterogeneous diffusion model which considers site-blocking effects of additives. Chemical reactions are simulated by an accelerated (tau-leaping) method for discrete stochastic simulation which adaptivel...
متن کاملModeling and Simulation of Biochemical Processes Using Stochastic Hybrid Systems: The Sugar Cataract Development Process
As biomedical research advances there is an increasing need to model and simulate more complicated systems to better understand them. Since biochemical processes are inherently stochastic and often contain both continuous and discrete behavior, stochastic hybrid systems are an ideal modeling paradigm for capturing their dynamics. In this paper we present a framework for modeling biochemical sys...
متن کامل